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University of Belgrade, Faculty of Physics, Studentski trg 12, 11000 Belgrade, Serbia
E–mail: majab@ipb.ac.rs

Abstract. Quantization of gravity is probably the most important unsolved problem of
theoretical physics today. For many years it has been approached only theoretically, but in
the last decades there is a growing amount of astrophysical and cosmological data that give
input and guide the further research. Present theories of quantum gravity are formulated in
a variety of ways: we here describe a model of fuzzy de Sitter space obtained in the context
of noncommutative geometry, and discuss some of its implications to cosmology.

1. INTRODUCTION

In many ways, gravity is unique among physical phenomena. Historically it had a
distinctive role in our understanding and description of Nature, as
– observations of motion of planets and Sun established astronomy as first of the
natural sciences, while attempts to systematize and explain these observations made
gravity the first of fundamental forces to be theoretically described;
– efforts to understand gravity brought, in physics, fundamental ideas like Newton’s
laws of classical mechanics and Einstein’s general relativity (GR);
– Newton’s and Einstein’s theories marked significant steps in the development of
mathematics (differential calculus and analysis, geometry) and its relation to physics;
– finally, a unique feature of gravity is that it has not been quantized, yet. It is indeed
this segment where we expect gravity to bring the next fundamental breakthrough.

Some of important GR results that form our current intuition about gravity are:
– spacetime is not an empty stage, a fixed framework (as in Newton’s mechanics),
but a dynamical object interacting with matter. In particular, the universe evolves;
– gravitational force can be described in purely geometric terms: physical quantities
that characterize spacetime are invariants like geodesic lines or curvature invariants;
– dynamics of spacetime is described through a classical field that carries energy and
momentum: Einstein equations are obtained from the principle of minimal action;
– Einstein equations are covariant under the changes of coordinates: diffeomorphism
invariance can be understood as a guiding symmetry principle to formulate GR;
– solutions to Einstein equations generically have singularities, like the black hole or
the big bang singularity. This result (due to Penrose and Hawking, around 1965)
was awarded by the Nobel prize in 2020. To obtain it, one analyzes the real physical
situations: the energy conditions on matter, boundary conditions, etc.
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However, we know that matter is quantized, either as point particles (in the non-
relativistic regime) or as quantum fields. This raises two important questions: how
to couple classical gravity to quantum matter; further, how to quantize gravity? The
standard recipe for quantization in quantum field theory (QFT) is to describe gravity
as classical field theory, expand it around the minimal-energy solution (vacuum), and
quantize perturbatively. Alternatively, one can generalize the quantum-mechanical
approach: write the dispersion relation for gravity (Hamiltonian constraint) and quan-
tize it, to obtain the gravitational analogue of the Schrödinger equation (Wheeler-de
Witt equation). But the standard recipes do not work: they give either unphysical
results (as gravity is not renormalizable) or formal answers (as there is no effective
way to do calculations that include functional equations, beyond the simplest cases).
Apart from heuristic reasons, gravity has to be quantized for physical and consistency
reasons: if it is a fundamental force, it should be unified with other fundamental in-
teractions and described in the same way, by quantum field theory. Furthermore,
classical singularities of GR certainly are unphysical, and quantization is a way to
remove them.

There is no a priori justification to extrapolate, to assume that spacetime on the
Planck scale has the same structure as it has on the atomic, galactic or cosmological
scales. Perhaps the (classical) structure of spacetime at small scales is not that of a
manifold, but discrete (‘quantum spacetime does not have points’)? Quantum field
theories on flat and curved spaces have the problem of ultraviolet (UV) divergences:
the propagator between points x and x′ is divergent in the coincidence limit x → x′

(i.e. p → ∞). This problem is solved by renormalization; but were the spacetime
structure lattice-like, it would have not existed. Diverse ideas are developed along
these lines. Perhaps the most physical way to give structure to the spacetime points
is to develop a model that ‘delocalizes’ their description, as in string theory or in loop
quantum gravity. Another, straightforward way, is to describe spacetime coordinates
by noncommuting operators, as in quantum mechanics. An important constraint on
all theories of quantum gravity is the classical, that is, macroscopic limit to GR.
In principle we build from the known: we usually keep one of desirable or intuitive
properties of general relativity (e.g. its field-theoretic interpretation, geometric inter-
pretation, symmetry principle) and relax the others.

2. NONCOMMUTATIVE GEOMETRY

The framework which we use is that of noncommutative (NC) geometry. NC geometry
is a very active area of research since the 1990s; some prominent names who developed
it on the side of mathematics include Fields medalists Connes and Kontsevich. Many
theoretical physicists, aspiring to different physical applications, have been involved in
this area of research, developing notions of noncommutative space, noncommutative
differential geometry and noncommutative field theory. An approach inspired by the
geometric description gravity, in the sense that it generalizes the Cartan formalism of
differential geometry, is Madore’s noncommutative frame formalism (Madore, 1995)
used here. We present a model of noncommutative or fuzzy de Sitter space developed
in Buric et al. 2015, 2018, 2019.

There are several noncommutative spaces whose properties are thoroughly inves-
tigated and well established, including description of classical and quantized fields
on them. The best known example is NC space with constant noncommutativity
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of Cartesian coordinates, or ‘Moyal deformation’ of the flat space: there are various
applications of this model to cosmology, though one should perhaps notice that it
is, by definition, anisotropic. Another paradigmatic example is the fuzzy sphere, a
two-dimensional spherically symmetric NC space of constant curvature defined by
the Lie algebra of rotation group. Further examples are κ-Minkowski space, fuzzy
hyperboloid, fuzzy CPn spaces, spaces built on different ?-products, etc. In order to
obtain noncommutative spaces that extend basic solutions of GR (e.g. FLRW cos-
mologies, black holes), one should preferably keep the spherical symmetry and work
in four spacetime dimensions: but this task proves to be far from straightforward
(Buric and Madore, 2014). The main reason is that the algebraic structure of space-
time imposes additional constraints which are, beyond commutative geometry, rather
nontrivial. We discuss here a generalization of the fuzzy sphere construction: the
four-dimensional fuzzy de Sitter space, based on the algebra of the de Sitter group
SO(1, 4) and its (unitary irreducible) representations. Although the full details are
rather technical, let us at least introduce the basic elements of the description.

Noncommutative space has a structure of an algebra A. It is generated by coor-
dinates xµ which are real i.e. hermitian, but in principle, non-commuting,

[xµ, xν ] = ik̄Jµν(x) . (1)

They can be ordinary commutative variables but also operators, finite matrices, etc.
Dimensional parameter k̄ sets the scale of noncommutativity; the formal limit k̄ → 0
is the commutative or macroscopic limit mentioned above. Uncertainty relations that
follow from (1) in the case when Jµν 6= 0 imply that ‘there are no points’ on a specific
NC space, i.e. that all coordinates cannot be measured simultaneously. The structure
of a NC space can be understood in terms of the spectra of its coordinates. Obviously,
a change of coordinates changes their spectra, but there is an overall diffeomorphism
invariance, meaning that one can transform (1) using the standard algebraic rules.
Apart from the properties of coordinates, there are other ways to describe a NC space,
e.g. its symmetries, its coherent states, and of course its commutative limit.

Differential-geometric structure of A is given by the momentum algebra, i.e. the
algebra of derivatives. In the NC frame formalism, momenta pα are functions or
operators that define the free falling frame (tetrad) eα,

eαf = [pα, f ]. (2)

The commutator satisfies the Leibniz rule, so eα is a derivation. Dual to derivations
eα are differential 1-forms θα; the differential of a function is defined as

df = (eαf) θα . (3)

On curved commutative manifold the moving frame is given by its components eµα,
eαf = eµα (∂µf), and momenta are combinations of partial derivatives,

pα = eµα ∂µ, eµα = [pα, x
µ] . (4)

In analogy, in the noncommutative case the tetrad and the metric are defined by

eµα = [pα, x
µ] , gµν = eµα e

ν
β η

αβ , (5)
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with additional conditions to assure orthonormality of the moving frame. Laplacian
of a scalar function is defined as

∆f = ηαβ [pα, [pβ , f ]] . (6)

It is possible, and rather straightforward, to define quantities like connection,
covariant derivative, curvature and torsion, so one can achieve the full differential-
geometric description. Further, one can introduce scalar, spinor and gauge fields with
their classical equations of motion. Action for the classical fields can be given as well,
providing that there is well defined integral/trace.

3. FUZZY DE SITTER SPACE

As a model of quantum cosmology we discuss four-dimensional fuzzy de Sitter space.
In the commutative case, de Sitter space is defined as an embedding

−v2 + w2 + x2 + y2 + z2 =
3

Λ
(7)

in the flat 5-dimensional space

ds2 = −dv2 + dw2 + dx2 + dy2 + dz2, (8)

where Λ is the cosmological constant. De Sitter space is a maximally symmetric
space, its symmetry group is the de Sitter group SO(1, 4).

In order to introduce the fuzzy version of de Sitter space, it is natural to start
with its symmetry algebra. This enables, on the one hand, to control symmetries of
the resulting NC space; on the other hand, it allows concrete calculations as there are
exact results on this Lie algebra and its representations. The so(1, 4) algebra has ten
generators Mαβ that satisfy

[Mαβ ,Mγδ] = −i(ηαγMβδ − ηαδMβγ − ηβγMαδ + ηβδMαγ) , (9)

α, β, ... = 0, 1, 2, 3, 4; our signature is ηαβ = diag(+−−−−). The Casimir operators,
quadratic and quartic, are

Q = −1

2
MαβM

αβ , W = −WαW
α , (10)

with the ‘Pauli-Lubanski’ vector Wα = 1
8 εαβγδηM

βγM δη. The Casimir relation
W= const is analogous to the embedding (7) which defines commutative de Sitter
space. Therefore we introduce noncommutative coordinates as

xα = `Wα (11)

and define fuzzy de Sitter space as a unitary irreducible representation of the SO(1, 4).
There are at least two choices of momenta that give geometry (metric, curvature)

of the de Sitter space in the commutative limit. We discuss the one defined by four
momenta p0, pi,

ip0 =
√

ΛM04 , ipi =
√

Λ (Mi4 +M0i). (12)
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The line element that the noncommutative frame formalism gives is

ds2 = −(θ0)2 + (θi)2 = −dτ2 + e2τ dxidxi (13)

and the corresponding scalar curvature is constant. From the expression for the line
element we can identify the cosmic time,

τ̂

`
= log

x0 + x4

`
= log (W 0 +W 4) . (14)

It is different from the embedding time, x0 = `W 0; the spatial coordinates are
xi = `W i, i = 1, 2, 3.

Unitary irreducible representations of the de Sitter group are infinite-dimensional,
labelled two quantum numbers (s, ρ). They fall into three categories (Dixmier, 1961):

◦ principal continuous series: ρ ≥ 0, s = 0, 12 , 1,
3
2 , . . .

Q = −s(s+ 1) + 9
4 + ρ2, W = s(s+ 1)( 1

4 + ρ2)

◦ complementary continuous series: ν = iρ ∈ R, |ν| < 3
2 , s = 0, 1, 2 . . .

Q = −s(s+ 1) + 9
4 − ν

2, W = s(s+ 1)( 1
4 − ν

2)

◦ discrete series: s = 1
2 , 1,

3
2 , 2 . . . , q = 1

2 + ν = 1
2 + iρ = s, s− 1, . . . 0 or 1

2

Q = −s(s+ 1)− (q + 1)(q − 2), W = −s(s+ 1)q(q − 1).

We would like to determine the spectra of the above-defined physical coordinates.
The most effective way is to use the Hilbert space representation corresponding to
one of representations given above, in which Mαβ , Wα are differential operators.
Such representations exist: we will discuss the principal continuous series (ρ, s = 1

2 ).
The representation space is the space of Dirac bispinors ψ(~p) that satisfy the Dirac
equation, with scalar product

(ψ,ψ) =

∫
d3p

2p0
ψ†γ0ψ . (15)

Using the Dirac representation of γ-matrices, we find

ψ(~p) =

 ϕ(~p)

− ~p · ~σ
p0 +m

ϕ(~p)

 , (ψ,ψ′) =

∫
d3p

p0

2m

p0 +m
ϕ†ϕ′ , (16)

where ϕ(~p) is a spinor and ~σ are the Pauli matrices. The group generators are

Mij = Lij + Sij , Sij =
i

4
[γi, γj ] (17)

M0i = L0i + S0i, S0i =
i

4
[γ0, γi] (18)

M40 = − ρ

m
p0 +

1

2m
{pi,M0i} , (19)

M4k = − ρ

m
pk −

1

2m
{p0,M0k} −

1

2m
{pi,Mik} , (20)
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with

Lij = i

(
pi

∂

∂pj
− pj

∂

∂pi

)
, L0i = ip0

∂

∂pi
, (21)

L40 = − ρ

m
p0 +

1

2m
{pi, L0i} , (22)

L4k = − ρ

m
pk −

1

2m
{p0, L0k} −

1

2m
{pi, Lik} . (23)

Using these, we obtain the operators of coordinates in this representation,

x0

`
= W 0 = − 1

2m

(ρ− i
2 )piσ

i + i p20
∂
∂piσ

i εijkp0pi
∂
∂pj σk + 3i

2 p0

εijkp0pi
∂
∂pj σk + 3i

2 p0 (ρ− i
2 )piσ

i + ip20
∂
∂pi σ

i

 , (24)

x4

`
= W 4 = −1

2

 ip0
∂
∂piσ

i εijkpi
∂
∂pj σk + 3i

2

εijkpi
∂
∂pj σk + 3i

2 ip0
∂
∂piσ

i

 . (25)

The remaining expression for the xi is in principle of similar structure but longer.

4. COSMOLOGICAL IMPLICATIONS

We can now formulate and solve the eigenvalue equations for coordinates of the fuzzy
de Sitter space and determine their spectra. W 0, W 4 and W 0 + W 4 commute with
the angular momenta Li, so we can choose their eigenfunctions in the form

ϕ(~p) =
f(p)

p
ϕjm +

h(p)

p
χjm , (26)

where the spinor spherical harmonics are given by

ϕjm =


√

j+m
2j Y

m−1/2
j−1/2√

j−m
2j Y

m+1/2
j−1/2

 , χjm =


√

j+1−m
2(j+1) Y

m−1/2
j+1/2

−
√

j+1+m
2(j+1) Y

m+1/2
j+1/2

 , (27)

Y ml (θ, ϕ) are the usual spherical harmonics in momentum space, p = |~p|, etc. The
nontrivial part for each eigenvalue problem is the radial equation for f(p) and h(p).
Computations are long but relatively straightforward: we just review the results.

Because of the SO(1, 4) symmetry, the spectra of spatial coordinates W i and of
W 4 are the same. The spectrum of W 4 is continuous: the real line. Its eigenfunctions
|λjm〉 are normalized as

〈λjm|λ′j′m′〉 = δ(λ− λ′) δjj′ δmm′ . (28)

Their radial part contains the associated Legendre functions, P−j−2iλ (p0).
The spectrum of the embedding time W 0 is discrete and its eigenvalues are given

by k(k + 1)− k′(k′ + 1), where k, k′ = 0, 12 , 1,
3
2 , . . . .
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The radial equation for the cosmic time eτ̂/`=W 0 +W 4 is the most interesting.

It reduces to the Bessel equation in variable z =
√

(p0−1)
(p0+1) and the solutions are given

in terms of Bessel functions Jj(2λz). The eigenvalue λ = eτ/` is continuous,λ ∈
(0,∞). This is in contradiction with the fact that, apparently, all eigenfunctions are
normalizable. A careful analysis shows that, naively defined, the cosmic time τ̂ is not
a self-adjoint operator. To obtain its self-adjoint extension one has to add specific
boundary conditions, i.e. to reduce the initial Hilbert space of functions to a subspace
of physical states. This reduction makes the spectrum of the cosmic time discrete,
and the corresponding eigenfinctions |τjm〉 orthonormal,

〈τjm|τ ′j′m′〉 = δττ ′ δjj′ δmm′ . (29)

The boundary condition is of the form

Jj+1(2λ)

Jj(2λ)
= const , (30)

and it determines the allowed discrete eigenvalues, τ = ` log λ. The solutions for
value 1 of the given constant are given graphically below.

10 20 30 40

-1

1

2

Let us summarize and discuss consequences of our results to cosmology.

The main result is that spatial coordinates of fuzzy de Sitter space are continuous,
while time is discrete. If we calculate the expectation value of the radius of universe,

(xi)2 = −`2WiW
i (31)

at fixed moment of time τ , we find

W + λ2 ≤ 〈τjm| − `2WiW
i|τjm〉 ≤ W + 2λ2 , (32)

where W is the value of the quartic Casimir operator, `
√
W = `

√
3
16 + 3ρ2

4 ≥ 0 .

This means that the radius of the universe is bounded below by `
√
W: it cannot

vanish in physical states, which implies that there is no big bang singularity.
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The radius of the universe grows with time exponentially: for late times we have
the usual behavior √

〈τjm| − `2WiW i|τjm〉 ∼ λ = eτ/`. (33)

Discreteness of time becomes relevant only in the ‘deep quantum region’ λ→ 0 ,
i.e. τ → −∞ . For values away from the Planck scale time is almost continuous: the
difference between its consecutive eigenvalues is macroscopically negligible,

τn+1 − τn ≈ ` log (1 +
1

n
) . (34)

Further interesting properties of our model, not discussed in details here, include
symmetry. Namely, the choice of a specific self-adjoint extension breaks the initial
symmetry at distances of order `, i.e. near the Planck scale. This ‘spontaneous
symmetry breaking’ can be pursued in all mathematical details; in particular, in the
macroscopic limit `→ 0 the full symmetry is recovered.

There are several possible directions in which this work should be continued. In
applications to cosmology, an important problem (well defined within the given for-
malism) is to include the scalar fied: describe its classical evolution, fluctuations and
then eventually, find the implications to inflation. We expect, further, that (small)
anisotropies like those observed in the CMB can be described by perturbation theory,
and indeed, there are results for perturbations of the flat noncommutative spaces. Of
course, for a fuller characterization of the CMB radiation one should develop a de-
scription of gauge and fermion fields on the fuzzy de Sitter background. These results
would give signatures of noncommutativity, i.e. its potentially measurable effects.
A more difficult problem, as we see it, is to find other ‘ground states’ of noncom-
mutative geometry, NC spaces that describe relevant configurations like an arbitrary
FLRW spacetime or black holes. Typically in these cases there is less symmetry, so
it is not quite clear what is the algebraic structure one should start with. However,
it is an important avenue of further research as, as we have seen, noncommutative
geometry can provide mechanisms to solve singularity problems of general relativity
while preserving the correct macroscopic limits.
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